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Abstract

The state vector equations for three dimensional, orthotropic and linearly magneto-electro-elastic media are derived

from the governing equations by eliminating rx, ry � sxy , Bx, By , Dx and Dy . An efficient method is presented for analysis

of multilayered magneto-electro-elastic plates. The methodology is based on the mixed formulation, in which basic

unknowns are formed by collecting not only displacements, electrical potential and magnetic potential but also some of

stresses, electrical displacements, and magnetic induction. As special case, simply supported and multilayered rectan-

gular plate is analyzed under the surface loading. Numerical results are presented graphically. The procedure of nu-

merical calculation shows that the formulation presented here is simple and direct.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the increasing technological applications of piezoelectric and piezomagnetic materials for deve-
lopment of ‘‘smart’’ or ‘‘intelligent’’ structures, the problem of magneto-electro-mechanical interaction in

piezoelectric and piezomagnetic media has attracted considerable attention in the last few years. These

materials exhibit magneto-electric-mechanical coupling effect in that they produce an electric field and a

magnetic field when deformed and, conversely, undergo deformation when subjected to an electric field or a

magnetic field. Some of the recent investigations have been devoted to magneto-electric effect of piezo-

electric and piezomagnetic materials (Avellaneda and Harshe, 1994; Benveniste, 1995; Nan, 1994). Pan

(2001) derived the exact solutions for three dimensional, anisotropic magneto-electro-elastic, simply sup-

ported, and multilayered rectangular plates by introducing the transfer matrix method.
The state vector method is an important method in analysis of multilayered structures (Bahar, 1972, 1975;

Bufler, 1971; Das and Rao, 1977; Sundara Raja Iyengar and Pandya, 1983; Sosa and Castro, 1993; Benitez

and Rosakis, 1987; Lee and Jiang, 1996; Wang, 1999a; Wang and Fang, 1999b; Wang, 2001a; Wang and
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Fang, 2001b; Wang et al., 2002). Based on the mixed formulation of solid mechanics, the state vector

method converts a boundary value problem to an equivalent initial value problem. Once the transfer matrix

of a single layer is obtained, a global matrix can be assembled by introducing interface continuity conditions.

The order of the global matrix does not depend on the number of layers since the matrix is obtained by the
multiplication of the transfer matrix of each single layer for certain interface continuity condition.

In this paper, state variable equations for the linear theory of magneto-electro-elastic materials are

presented with the aim of deriving an efficient analytical method for multilayered magneto-electro-elastic

structures. Using the state vector method developed in the study, an analytical solution is obtained for

magneto-electro-elastic, simply supported and multilayered rectangular plates in the form of infinite series.

The accuracy of the solutions can be controlled to any desired level by retaining an appropriate number of

series terms. Some of numerical results are given.

2. Basic equations

In this section, we present a brief summary of basic equations for multilayered magneto-electro-elastic

media in Cartesian coordinates. If body forces, electric charge density and magnetic charge density are

ignored, the magneto-electro-elastic field for static cases is governed by
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where rij, Dj, and Bj are the stress components, electric displacement components, and magnetic induction

components, respectively. For an orthotropic magneto-electro-elastic solid, with transversely isotropy being

a special case, the coupled constitutive equation can be written in the following form:
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where cij, eij and lij are the elastic, dielectric, and magnetic permeability coefficients, respectively; eij, qij and
dij are the piezoelectric, piezomagnetic, and magnetoelectric coefficients, respectively; u, v and w are the
component of displacements; / and w are the electric potential and magnetic potential, respectively. Eqs.
(4)–(6) represent magneto-electro-elastic coupled constitutive relations. Various uncoupled cases can be

reduced from Eqs. (4)–(6) by setting the appropriate coefficients to zero.

3. State vector formulation

The state vector approach is based on the mixed formulation of solid mechanics in which u, v, w, rz,

Dz, Bz, szx, szy , / and w are taken as basic unknowns. Following the process of state vector approach in
piezoelasticity (Sosa and Castro, 1993; Lee and Jiang, 1996; Wang, 1999a, 2001a) and eliminating rx, ry , sxy ,
Dx, Dy , Bx and By from the governing equations (1)–(6), the field equations can be recast in the following

matrix form:

og1
oz

¼ ½A�g1 ð7aÞ

g2 ¼ ½B�g1 ð7bÞ

where g1 is the basic unknown vector, which is called the state vector. g2 is related to g1 by Eq. (7b).

g1 ¼ u v Dz Bz rz szx szy / w w½ �T ð8Þ

g2 ¼ rx ry sxy Dx Dy Bx By½ �T ð9Þ

½A� ¼ 0 A1
A2 0

� �
; ½B� ¼ B1 0

0 B2

� �
ð10Þ
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ja1 ¼ e33l33 � d233; ja2 ¼ e33l33 � d33q33; ja3 ¼ q33e33 � e33d33

ja4 ¼ �c33l33 � q233; ja5 ¼ c33d33 þ e33q33; ja6 ¼ �c33e33 � e233

j ¼ e33ðc33l33 þ q233Þ � d33ðc33d33 þ 2e33q33Þ þ e233l33

b11 ¼ a1c13 þ a2e31 þ a3q31; b12 ¼ a1c23 þ a2e32 þ a3q32; b21 ¼ a2c13 þ a4e31 þ a5q31

b22 ¼ a2c23 þ a4e32 þ a5q32; b31 ¼ a3c13 þ a5e31 þ a6q31; b32 ¼ a3c23 þ a5e32 þ a6q32

a1 ¼ c11 � c13b11 � e31b21 � q31b31; a2 ¼ c12 � c13b12 � e31b22 � q31b32
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a3 ¼ c13a1 þ e31a2 þ q31a3; a4 ¼ c13a2 þ e31a4 þ q31a5; a5 ¼ c13a3 þ e31a5 þ q31a6
a6 ¼ c12 � c23b11 � e32b21 � q32b31; a7 ¼ c22 � c23b12 � e32b22 � q32b32
a8 ¼ c23a1 þ e32a2 þ q32a3; a9 ¼ c23a2 þ e32a4 þ q32a5; a10 ¼ c23a3 þ e32a5 þ q32a6

a ¼ 1

c55
; b ¼ 1

c44
; b1 ¼ ae15; b2 ¼ ae215 þ e11; b3 ¼ aq15e15 þ d11; b4 ¼ be24

b5 ¼ be224 þ e22; b6 ¼ bq24e24 þ d22; c1 ¼ aq15; c2 ¼ aq215 þ l11; c3 ¼ bq24

c4 ¼ bq224 þ l22 ð15Þ

Eq. (7a) is a system of partial differential equations taking state vector as basic unknowns. If the solution of

equation (7a) is obtained, we can obtain the solution of Eq. (7b) by differential procedure.

4. Analytical solutions of simply supported plates

In this section, we employ the state vector equation presented in the above section to find an analytical

solution for simply supported on all four edges and multilayered magneto-electro-elastic rectangular plates.

We assume that a Cartesian coordinate system (x; y; z) is attached to the plate. The origin of the coordinate
system is located at one of the four corners on the bottom surface, and the z-axis is normal to the plate. Let
zj denote the coordinate of the lower interface of the jth layer and zjþ1 the coordinate of the upper interface
of the jth layer. The thickness of the jth layer is hj ¼ zjþ1 � zj. Material properties in each layer can be
different, and surface loads (mechanical, electric or magnetic) can be applied. Along the interface, the
displacement and traction vectors are assumed to be continuous except the internal loading is applied. For

simplicity, we assume that the surface load is applied on the top surface of the layered plates. We assume

that N-layered rectangular plates have dimensions Lx in x-direction and Ly in y-direction and total thickness
H (in the vertical direction). u denotes the displacement of x-direction, v the displacement of y-direction,
and w the displacement of z-direction. The boundary conditions of state vector can be written as follows:

v ¼ w ¼ / ¼ w ¼ Dz ¼ Bz ¼ rz ¼ szy ¼ 0 at x ¼ 0; and x ¼ Lx

u ¼ w ¼ / ¼ w ¼ Dz ¼ Bz ¼ rz ¼ szx ¼ 0 at y ¼ 0; and y ¼ Ly ð16Þ

The state variables, which exactly satisfy the boundary conditions, can be expressed in the following form:

u
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/

u
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BBBBBBBBBBBBBBBBBB@

1
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X1
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�vvmnðzÞ sin nx cos gy

DzmnðzÞ sin nx sin gy

BzmnðzÞ sin nx sin gy

�rrzmnðzÞ sin nx sin gy
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�sszymnðzÞ sin nx cos gy
�//mnðzÞ sin nx sin gy

wmnðzÞ sin nx sin gy

�wwmnðzÞ sin nx sin gy

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ð17Þ

where n ¼ np=Lx and g ¼ mp=Ly . Substituting Eq. (17) into Eqs. (7a) and (7b), we obtain a system of or-
dinary differential equations, which are expressed in the following matrix form.
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According to the theory of the solution of ordinary differential equations (Bellman, 1970), the solutions of

state vector equations can be expressed as follows.

�gg1mnðzÞ ¼ expðAzÞ�gg1mnð0Þ ¼ ½G��gg1mnð0Þ ð26Þ

where ½G� ¼ expðAzÞ, expðAzÞ is a matrix exponential function. Complex algebraic manipulations involving
the calculation of expðAzÞ can be avoided because expðAzÞ can be directly calculated by using bulit-in
function in Mathematica or Matlab. For N -multilayered magneto-electro-elastic plates, there are
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�gg1mnðz1Þ ¼ ½Gðh1Þ��gg1mnð0Þ
�gg1mnðz2Þ ¼ ½Gðh2Þ��gg1mnðz1Þ

..

.

�gg1mnðzN Þ ¼ ½GðhN Þ��gg1mnðzN�1Þ

ð27Þ

Considering the conditions of interface continuity, we have

�gg1mnðzN Þ ¼ ½T ��gg1mnð0Þ
½T � ¼ ½GðhN Þ� � � � ½Gðh2Þ�½Gðh1Þ�

ð28Þ

For multilayered magneto-electro-elastic plates, if we assume that the stresses, electric displacements, and

magnetic induction of the upper and bottom surface are known, their displacements, electric potential, and

magnetic potential are unknown. Rearranging Eq. (28), we have

UmnðzNÞ
F mnðzN Þ

� �
¼ T11 T12

T21 T22

� �
Umnð0Þ
F mnð0Þ

� �
ð29Þ

Solving the above equation, we obtain the following solutions:

fUmnð0Þg ¼ ½T21��1ðfF mnðzNÞg � ½T22�fF mnð0ÞgÞ
fUmnðzNÞg ¼ ½T11�½T21��1fF mnðzN Þg þ ð½T12� � ½T11�½T21��1½T22�ÞfF mnð0Þg

ð30Þ

where

fUmng ¼ �uumn �vvmn �//mn wmn �wwmn

� �T
fF mng ¼ Dzmn Bzmn �rrzmn �sszxmn �sszymn

� �T ð31Þ

In order to obtain the generalized displacements and tractions at any depth, say zk 6 z6 zkþ1 in layer k,
we can evaluate the solutions using Eqs. (26) and (27). With the generalized displacement and traction

vectors at a given depth being solved, the corresponding in-plane quantities can be evaluated using

Eq. (18b).

If rz, Dz and Bz applied on the surface of the plate are known complex function about x and y, we can
expand rz, Dz and Bz into infinite double Fourier series and then adding the responses together term by

term.
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:

9=
; ¼ 4

LxLy

Z Lx

0

Z Ly

0

rz

Dz

Bz

8<
:

9=
; sin nx sin gy dxdy ð32Þ

In the above equation, �rrzmn, Dzmn and Bzmn are the coefficients of the Fourier series.

5. Numerical examples

In this section, we present some numerical results by using the formulation presented in this paper.

Numerical calculation is completed by using Mathematica 4.0. The numerical example is for three-multi-
layered plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4. Three layers have equal

thickness of 0.1 m. The material properties for BaTiO3 and CoFe2O4 are listed in Tables 1 and 2, respectively.
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Fig. 1. (a) Magnetic potential w (C/s), (b) electric potential / (V), (c) norma displacement w� 109 (m), (d) Z-normal stress rZ (N/m
2),

(e) Z-electric displacement DZ (C/m
2), (f) Z-magnetic induction BZ (Wb/m

2).

Table 2

Material coefficients of the magnetostrictive CoFe2O4 (Cij in 10
9 N/m2, qij in N/Am, eij in 10�9 C2/(N m2), and lij in 10

�6 Ns2/C2)

C11 ¼ C22 C12 C13 ¼ C23 C33 C44 ¼ C55 C66
286 173 170.5 269.5 45.3 56.5

q31 ¼ q32 q33 q24 ¼ q15 e11 ¼ e22 e33 l11 ¼ l22 l33
580.3 699.7 550 0.08 0.093 )590 157

Table 1

Material coefficients of the piezoelectric BaTiO3 (Cij in 10
9 N/m2, eij in C/m2, eij in 10�9 C2/(N m2), and lij in 10

�6 Ns2/C2)

C11 ¼ C22 C12 C13 ¼ C23 C33 C44 ¼ C55 C66
166 77 78 162 43 44.5

e31 ¼ e32 e33 e24 ¼ e15 e11 ¼ e22 e33 l11 ¼ l22 l33
)4.4 18.6 11.6 11.2 12.6 5 10
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The piezoelectric BaTiO3 and the magnetostrictive CoFe2O4 are homogeneous transversely isotropic

solid with its symmetry axis along the z-axis. Two sandwich plates with stacking sequences BaTiO3/
CoFe2O4/BaTiO3 (called B/F/B) and CoFe2O4/BaTiO3/CoFe2O4 (called F/B/F) are investigated.

Machanical loading: A simply supported square lamina (Lx ¼ Ly ¼ 1 m) of thickness 0.3 m is subjected to a
mechanical load on the top surface with the following sinusoidal distribution.

rz ¼ r0 sinðpx=LxÞ sinðpy=LyÞ ð33Þ

where r0 ¼ 1 N/m2. Responses are calculated for fixed horizontal coordinates ðx; yÞ ¼ ð0:75Lx; 0:25LyÞ. The
numerical results are presented in Fig. 1(a)–(f).

Fig. 2. (a) Normal displacement w (m), (b) electric potential / 10�7 (V), (c) magnetic potential w 10�2 (C/s), (d) normal stress rZ 10
�9

(N/m2), (e) normal electric displacement DZ (C/m
2), (f) normal magnetic induction BZ (Wb/m

2), (g) shear stress szx 10�9 (N/m2),

(h) electric displacement Dx (C/m
2), (i) magnetic induction Bx (Wb/m

2).
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Electric loading: The same plate is loaded electrically on the top surface by transverse electric displacement

of sinusoidal distribution

Dz ¼ D0 sinðpx=LxÞ sinðpy=LyÞ ð34Þ

where D0 ¼ 1 C/m2. The responses are calculated at the same location as the previous mechanical loaded

plates. The numerical results are given in Fig. 2(a)–(i).

For mechanical loading, we checked our solutions with the previously published results (Pan, 2001) and

found that the present formulation agrees with these solutions. We also present some new results in Fig.

2(a)–(i) for electric loading.

Fig. 1 shows variation of /, w, w, rz, Dz, Bz along the thickness direction in sandwich piezoelectric/

piezomagnetic plate under mechanical loading on the top surface. Fig. 2 shows variation of /, w, w, rz, Dz,

Bz, szx, Dx, Bx along the thickness direction in sandwich piezoelectric/piezomagnetic plate under electric
loading on the top surface. Two sandwich plates with stacking sequences B/F/B and F/B/F, on which the

mechanical and electrical loading are applied, are investigated. For the mechanical loading, the present

solutions agree with the previously published results (Pan, 2001). For the electrical loading, the following

general features are observed from Fig. 2(a)–(i). The elastic, electric and magnetic quantities have been

greatly influenced by the stacking sequences. Fig. 2(d) and (g) shows that the stresses rz and szx are
completely different for the B/F/B and F/B/F stacking sequences. This phenomenon does not exist for the

mechanical loading. Fig. 2(f) shows that the positive and negative of Bz along the thickness direction have

been changed for the B/F/B and F/B/F stacking sequences. Fig. 2(h) and (i) shows that Dx and Bx along the
thickness are discontinuous for B/F/B and F/B/F.

Fig. 2 (continued)
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6. Conclusions

The state vector equations are presented for three dimensional, orthotropic and magneto-electro-elastic

media. The method is based on the mixed formulation of solid mechanics, in which not only displacements,
electric potential and magnetic potential but also some of stresses, electric displacements and magnetic

induction are taken as basic unknowns. As special case, an exact solution is obtained for three dimensional,

transversely isotropic, magneto-electro-elastic and multilayered rectangular plates with simply supported.

For mechanical loading, numerical results presented here agree with those presented by Pan (2001). Some

of new results are also presented for the electrical loading in which the elastic, electrical and magnetic

quantities have been influenced by the stacking sequences. The advantage of the present method is that the

order of global transfer matrix does not depend on the number of layers because all intermediate state

vectors have been eliminated by using the continuity condition of the interface. Complicated algebraic
manipulations involving the calculation of expðzAÞ can be avoided because expðzAÞ can be directly calcu-
lated by using built-in function in Mathematica or Matlab. The derived procedure and formulation pre-

sented in this paper is simple and elegant. The state vector approach developed herein can readily be

extended for the study of transversely isotropic, magneto-Electro-elastic multilayered rectangular plates

with general interlayer and boundary conditions. The coupling phenomenon of the magneto-electro-elastic

field has potential applications in the field of smart structures. The problem of plates with more general

boundary conditions at the edges is under study.
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