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Abstract

The state vector equations for three dimensional, orthotropic and linearly magneto-electro-elastic media are derived
from the governing equations by eliminating o,, 0, - T, By, B,, D, and D,. An efficient method is presented for analysis
of multilayered magneto-electro-elastic plates. The methodology is based on the mixed formulation, in which basic
unknowns are formed by collecting not only displacements, electrical potential and magnetic potential but also some of
stresses, electrical displacements, and magnetic induction. As special case, simply supported and multilayered rectan-
gular plate is analyzed under the surface loading. Numerical results are presented graphically. The procedure of nu-
merical calculation shows that the formulation presented here is simple and direct.
© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Magneto-electro-elastic media; Multilayered plates; State vector approach; Exact solutions

1. Introduction

With the increasing technological applications of piezoelectric and piezomagnetic materials for deve-
lopment of “smart” or “intelligent” structures, the problem of magneto-electro-mechanical interaction in
piezoelectric and piezomagnetic media has attracted considerable attention in the last few years. These
materials exhibit magneto-electric-mechanical coupling effect in that they produce an electric field and a
magnetic field when deformed and, conversely, undergo deformation when subjected to an electric field or a
magnetic field. Some of the recent investigations have been devoted to magneto-electric effect of piezo-
electric and piezomagnetic materials (Avellaneda and Harshe, 1994; Benveniste, 1995; Nan, 1994). Pan
(2001) derived the exact solutions for three dimensional, anisotropic magneto-electro-elastic, simply sup-
ported, and multilayered rectangular plates by introducing the transfer matrix method.

The state vector method is an important method in analysis of multilayered structures (Bahar, 1972, 1975;
Bufler, 1971; Das and Rao, 1977; Sundara Raja Iyengar and Pandya, 1983; Sosa and Castro, 1993; Benitez
and Rosakis, 1987; Lee and Jiang, 1996; Wang, 1999a; Wang and Fang, 1999b; Wang, 2001a; Wang and
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Fang, 2001b; Wang et al., 2002). Based on the mixed formulation of solid mechanics, the state vector
method converts a boundary value problem to an equivalent initial value problem. Once the transfer matrix
of a single layer is obtained, a global matrix can be assembled by introducing interface continuity conditions.
The order of the global matrix does not depend on the number of layers since the matrix is obtained by the
multiplication of the transfer matrix of each single layer for certain interface continuity condition.

In this paper, state variable equations for the linear theory of magneto-electro-elastic materials are
presented with the aim of deriving an efficient analytical method for multilayered magneto-electro-elastic
structures. Using the state vector method developed in the study, an analytical solution is obtained for
magneto-electro-elastic, simply supported and multilayered rectangular plates in the form of infinite series.
The accuracy of the solutions can be controlled to any desired level by retaining an appropriate number of
series terms. Some of numerical results are given.

2. Basic equations

In this section, we present a brief summary of basic equations for multilayered magneto-electro-elastic
media in Cartesian coordinates. If body forces, electric charge density and magnetic charge density are
ignored, the magneto-electro-elastic field for static cases is governed by

0o, 01, 01y

ox oy | oz 0
0t | 0oy | 01,

=0 1
ox Oy Oz (1)
Ot,, Ot, Oo. 0
Ox dy 0z
oD, oD, oD.
ox + a + 0 0 (2)
0B, 0B, 0B.
o + a—y + % 0 (3)

where 0;;, D;, and B; are the stress components, electric displacement components, and magnetic induction
components, respectively. For an orthotropic magneto-electro-elastic solid, with transversely isotropy being
a special case, the coupled constitutive equation can be written in the following form:
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where ¢, &; and y;; are the elastic, dielectric, and magnetic permeability coefficients, respectively; e;, g;; and
d;; are the piezoelectric, piezomagnetic, and magnetoelectric coefficients, respectively; u, v and w are the
component of displacements; ¢ and y are the electric potential and magnetic potential, respectively. Eqs.
(4)-(6) represent magneto-electro-elastic coupled constitutive relations. Various uncoupled cases can be
reduced from Egs. (4)—(6) by setting the appropriate coefficients to zero.

3. State vector formulation

The state vector approach is based on the mixed formulation of solid mechanics in which u, v, w, a.,
D., B., 1., 1.y, ¢ and Y are taken as basic unknowns. Following the process of state vector approach in
piezoelasticity (Sosa and Castro, 1993; Lee and Jiang, 1996; Wang, 1999a, 2001a) and eliminating oy, 6,, Ty,
D,, D,, B, and B, from the governing equations (1)—(6), the field equations can be recast in the following
matrix form:

A fan, (72)
ny = [B]m (7b)

where #, is the basic unknown vector, which is called the state vector. 5, is related to 5, by Eq. (7b).
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o3 = c13a1 + e31ax + ¢31a3, 0y = C13a2 + €31a4 + g31as5, U5 = C13d3 + €3145 + ¢31d6

0 = C12 — C3b1 — enby — 9321931, 07 = C» — C3b1y — e3byn — 6]32[)32
oy = €230 + exndx + gas, Uy = C23dr + exdq + gnds, 0 = 2303 + €3ds + §3ds
1 1
2

a=—, b=—, pi=aes, p,= aeys + &, Bs = aqiseis +di, Py = bexn

Cs5 C44

2 Ny _ 2 _
Bs = bey, +en,  Po=bquen +dn, 7 =aqis, 7y, =aqs+ Wy, 73 =bgxu
2

Va4 = Doy + 1 (15)

Eq. (7a) is a system of partial differential equations taking state vector as basic unknowns. If the solution of
equation (7a) is obtained, we can obtain the solution of Eq. (7b) by differential procedure.

4. Analytical solutions of simply supported plates

In this section, we employ the state vector equation presented in the above section to find an analytical
solution for simply supported on all four edges and multilayered magneto-electro-elastic rectangular plates.
We assume that a Cartesian coordinate system (x, y, z) is attached to the plate. The origin of the coordinate
system is located at one of the four corners on the bottom surface, and the z-axis is normal to the plate. Let
z; denote the coordinate of the lower interface of the jth layer and z;,, the coordinate of the upper interface
of the jth layer. The thickness of the jth layer is h; = z;; — z;. Material properties in each layer can be
different, and surface loads (mechanical, electric or magnetic) can be applied. Along the interface, the
displacement and traction vectors are assumed to be continuous except the internal loading is applied. For
simplicity, we assume that the surface load is applied on the top surface of the layered plates. We assume
that N-layered rectangular plates have dimensions L, in x-direction and L, in y-direction and total thickness
H (in the vertical direction). u# denotes the displacement of x-direction, v the displacement of y-direction,
and w the displacement of z-direction. The boundary conditions of state vector can be written as follows:

v=w=¢=¢y=D,=B.=0.=1,=0 atx=0, and x=1L,

u=w=¢=y=D,=B,=0,=1,=0 aty=0, and y=1L, (16)

The state variables, which exactly satisfy the boundary conditions, can be expressed in the following form:
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where ¢ = nn/L, and n = mn/L,. Substituting Eq. (17) into Egs. (7a) and (7b), we obtain a system of or-
dinary differential equations, which are expressed in the following matrix form.
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According to the theory of the solution of ordinary differential equations (Bellman, 1970), the solutions of
state vector equations can be expressed as follows.

M (2) = exp(A2)11,,,(0) = G, (0) (26)

where [G] = exp(4z), exp(4z) is a matrix exponential function. Complex algebraic manipulations involving
the calculation of exp(4z) can be avoided because exp(4z) can be directly calculated by using bulit-in
function in Mathematica or Matlab. For N-multilayered magneto-electro-elastic plates, there are
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(27)
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For multilayered magneto-electro-elastic plates, if we assume that the stresses, electric displacements, and
magnetic induction of the upper and bottom surface are known, their displacements, electric potential, and
magnetic potential are unknown. Rearranging Eq. (28), we have

{gmn(ZN)} — l:Tll T12:|{§mn(0)} (29)
an (ZN) TZl T22 an (0)
Solving the above equation, we obtain the following solutions:
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In order to obtain the generalized displacements and tractions at any depth, say z; <z <z, in layer &,
we can evaluate the solutions using Egs. (26) and (27). With the generalized displacement and traction
vectors at a given depth being solved, the corresponding in-plane quantities can be evaluated using
Eq. (18b).

If 6., D. and B, applied on the surface of the plate are known complex function about x and y, we can
expand a,, D, and B, into infinite double Fourier series and then adding the responses together term by
term.

(31)

a'zmn 4 Ly L, (o
l__)zmn =77 /0 /0 D, ; sin éxsinnydxdy (32)
Bzmn =y Bz

In the above equation, @.,,, D.., and B.,, are the coefficients of the Fourier series.

5. Numerical examples

In this section, we present some numerical results by using the formulation presented in this paper.
Numerical calculation is completed by using Mathematica 4.0. The numerical example is for three-multi-
layered plates made of piezoelectric BaTiO; and magnetostrictive CoFe,O4. Three layers have equal
thickness of 0.1 m. The material properties for BaTiO; and CoFe,O; are listed in Tables 1 and 2, respectively.
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Table 1
Material coefficients of the piezoelectric BaTiOs (Cy; in 10° N/m?, e;; in C/m?, &; in 10~ C*/(N m?), and g, in 10~ Ns*/C?)
Cyp=Cx Cn Ci3=Cy Cs3 Cyy = Css Cé6
166 77 78 162 43 44.5
€3] = exn €33 €y =éejs &1l = &n €33 My = My H33
-4.4 18.6 11.6 11.2 12.6 5 10
Table 2
Material coefficients of the magnetostrictive CoFe,Oy (C; in 10° N/m?, g;; in N/Am, ¢; in 107 C*/(N m?), and g;; in 10~ Ns*/C?)
Cll = CZZ CIZ C13 = C23 C33 C44 = CSS C66
286 173 170.5 269.5 453 56.5
q31 = 43 q33 92 = 415 &1 = & £33 My = K H33
580.3 699.7 550 0.08 0.093 -590 157
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Fig. 1. (a) Magnetic potential y (C/s), (b) electric potential ¢ (V), (c) norma displacement w x 10° (m), (d) Z-normal stress o, (N/m?),
(e) Z-electric displacement D; (C/m?), (f) Z-magnetic induction B; (Wb/m?).



The piezoelectric BaTiO; and the magnetostrictive CoFe,O4 are homogeneous transversely isotropic
solid with its symmetry axis along the z-axis. Two sandwich plates with stacking sequences BaTiOs/
CoFe,04/BaTiO; (called B/F/B) and CoFe,0,/BaTiO3/CoFe,0O, (called F/B/F) are investigated.

Machanical loading: A simply supported square lamina (L, = L, = 1 m) of thickness 0.3 m is subjected to a

J. Wang et al. | International Journal of Solids and Structures 40 (2003 ) 16691680

mechanical load on the top surface with the following sinusoidal distribution.

0. = gosin(nmx/L,) sin(ny/L,)

where 6y = 1 N/m?. Responses are calculated for fixed horizontal coordinates (x,y) = (0.75L,,0.25L,). The

numerical results are presented in Fig. 1(a)—(f).
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Fig. 2 (continued)

Electric loading: The same plate is loaded electrically on the top surface by transverse electric displacement
of sinusoidal distribution

D, = Dysin(nx/L,) sin(ny/L,) (34)

where Dy = 1 C/m?. The responses are calculated at the same location as the previous mechanical loaded
plates. The numerical results are given in Fig. 2(a)—(1).

For mechanical loading, we checked our solutions with the previously published results (Pan, 2001) and
found that the present formulation agrees with these solutions. We also present some new results in Fig.
2(a)—(1) for electric loading.

Fig. 1 shows variation of ¢, Y, w, a,, D,, B, along the thickness direction in sandwich piezoelectric/
piezomagnetic plate under mechanical loading on the top surface. Fig. 2 shows variation of ¢, ¥, w, 6., D.,
B., 1., D,, B, along the thickness direction in sandwich piezoelectric/piezomagnetic plate under electric
loading on the top surface. Two sandwich plates with stacking sequences B/F/B and F/B/F, on which the
mechanical and electrical loading are applied, are investigated. For the mechanical loading, the present
solutions agree with the previously published results (Pan, 2001). For the electrical loading, the following
general features are observed from Fig. 2(a)-(i). The elastic, electric and magnetic quantities have been
greatly influenced by the stacking sequences. Fig. 2(d) and (g) shows that the stresses ¢, and 7., are
completely different for the B/F/B and F/B/F stacking sequences. This phenomenon does not exist for the
mechanical loading. Fig. 2(f) shows that the positive and negative of B, along the thickness direction have
been changed for the B/F/B and F/B/F stacking sequences. Fig. 2(h) and (i) shows that D, and B, along the
thickness are discontinuous for B/F/B and F/B/F.
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6. Conclusions

The state vector equations are presented for three dimensional, orthotropic and magneto-electro-elastic
media. The method is based on the mixed formulation of solid mechanics, in which not only displacements,
electric potential and magnetic potential but also some of stresses, electric displacements and magnetic
induction are taken as basic unknowns. As special case, an exact solution is obtained for three dimensional,
transversely isotropic, magneto-electro-elastic and multilayered rectangular plates with simply supported.
For mechanical loading, numerical results presented here agree with those presented by Pan (2001). Some
of new results are also presented for the electrical loading in which the elastic, electrical and magnetic
quantities have been influenced by the stacking sequences. The advantage of the present method is that the
order of global transfer matrix does not depend on the number of layers because all intermediate state
vectors have been eliminated by using the continuity condition of the interface. Complicated algebraic
manipulations involving the calculation of exp(z4) can be avoided because exp(z4) can be directly calcu-
lated by using built-in function in Mathematica or Matlab. The derived procedure and formulation pre-
sented in this paper is simple and elegant. The state vector approach developed herein can readily be
extended for the study of transversely isotropic, magneto-Electro-elastic multilayered rectangular plates
with general interlayer and boundary conditions. The coupling phenomenon of the magneto-electro-elastic
field has potential applications in the field of smart structures. The problem of plates with more general
boundary conditions at the edges is under study.
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